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We use a well-studied soluble model to define a nonequilibrium entropy. This 
entropy has all the required properties; in particular, it is not time-reversal 
invariant, so that its monotonic increase in time also shows up after we perform 
a velocity inversion "experiment." 
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1. INTRODUCTION 

Exactly soluble models have been extensively used in statistical mechanics. 
Very often they provide a way of testing the approximations that are 
introduced in more general theories. In the case of the problem of approach 
to equilibrium, they have served as guides for understanding how one can 
obtain an irreversible macroscopic description starting from the dynamical 
equations of motion. Of course one cannot expect a general solution to this 
long-standing problem simply by looking at these models, which are, in 
general, very pathological. However, the existence of at least one infinite 
dynamical system where the irreversible description is exact is important by 
itself. Besides, such models are also pedagogical in the sense that the 
physical processes taking place are easier to study. 

The model we study in this paper has already been investigated from 
this point of view in Ref. 1. It has a very peculiar property: provided no 
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initial correlations exist among the particles, then the Boltzmann equation 
gives the exact description of the evolution of the one-particle distribution 
function. This property makes the model interesting for a study of the 
relation between the kinetic equations and the underlying reversible dy- 
namics. In Ref. 1 we analyzed this relation by solving explicitly the 
Loschmidt paradox in this model. Here we want to construct a functional 
which has all the desired properties for a nonequilibrium entropy. (4) 

The system is an assembly of N hard points moving on a line of length 
L and we shall be interested in the time evolution of the reduced distribu- 
tion functions in the so-called thermodynamic limit, i.e., letting L ~ m, 
N ~  m, with N/L = P  remaining finite. We shall limit ourselves to the 
particular case of a local perturbation of equilibrium, so that the equations 
will be linear. From a mathematically rigorous point of view, it has been 
shown that, given such initial conditions, the hierarchy (BBGKY) equa- 
tions for the infinite system have a unique solution in the space of 
sequences of bounded functions. (lz~ Also, the ergodic properties of the 
infinite system of hard rods has been studied, (6) and that system is known 
to be a Bernoulli flow, whereas the finite system is not even ergodic. 
However, the relation of these ergodic properties to the kinetic description 
is still an open question. For instance, the Bernoulli flow property is 
sufficient for the existence of an H-theorem(7); however, it does not imply 
the correctness of an irreversible kinetic equation, or, even more, the 
existence of a transport coefficient. 

These kinetic properties have been extensively studied in our 
model. (2'5'8) One knows exactly the self-diffusion coefficient (5) and this has 
allowed a study of the nonanalytic density expansion. As already men- 
tioned, when the velocities of the rods take discrete values the collision 
operator of the kinetic equation for the one-particle distribution function 
has a purely discrete spectrum; it reduces to the Boltzmann collision 
operator. In Ref. 1 we generalized this kinetic equation by taking into 
account the effect of the initial correlations, which are, of course, essential 
in the case of velocity inversion. In this paper we want to show that there is 
a similar kinetic description of the correlations--more precisely, the non- 
factorizable parts of the n-particle distribution functions--and use this 
description to define a nonequilibrium entropy. This construction will be 
based on a very peculiar property of the model with two allowed velocities, 
namely that the reduced phase space can be split into two orthogonal 
subspaces, a precollisional and a postcollisional part, and there is an 
irreversible flow from the first part to the other. 

We shall proceed as follows. We first recall the properties of the model 
and its "Liouville" equation of motion, and define the reduced quantities, 
which we assume remain finite in the thermodynamic limit. 
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The next section is devoted to the derivation of the kinetic equations. 
Because the methods have already been given in a preceding article and the 
calculations involved are not difficult but tedious, we simply state most of 
the results. The main property which will be needed is the existence of two 
orthogonal projections such that reduced distribution functions will be split 
in two parts, one of which will evolve independent of its complement. 
Although there cannot be an H-theorem for the entire set of reduced 
functions, we shall define an H-function which depends on the projections 
of the reduced functions and which has a monotonic decrease in time. 

In the last section we finally illustrate this irreversible behavior by 
calculating the entropy before and after a velocity inversion has been 
performed; indeed, with our definition, the entropy has a jump during the 
velocity inversion so that, after it, it increases again monotonically. Most of 
the results are given without detailed proofs; these will b e  published 
elsewhere.(14) 

2. THE MODEL AND ITS PROPERTIES 

The model we shall study is a simplification of the one-dimensional, 
infinite, hard-rod system. First of all the system is supposed to be at 
equilibrium except for the statistical properties of a tagged particle located 
near the origin and having correlations of finite range with its neighbors. 
Under these conditions, the dynamical evolution is similar to that of a 
Rayleigh model where only the labeled particle interacts with otherwise 
freely moving bath particles. (s) Moreover, we suppose the system is made 
up of points having two allowed velocities; the first simplification has no 
important consequences, as it is known that thermodynamic properties of 
hard rods of length d are recovered by substituting p ~ p(1 - pd)-l in the 
results for points. (8) The second simplification is more drastic, in that it is 
responsible for a purely point spectrum of the collision operator, leading 
therefore to a pure exponential decay for the velocity autocorrelation 
function. However, the point is that, as such, the model is still of a 
dynamical nature. 

The usual approach for the study of nonequilibrium properties has to 
be modified because of the singular nature of the interaction potential. In 
particular, a limiting procedure is required in order to define a so-called 
"pseudo-Liouville" operator. (9'1~ 

Let Pu(rl,e 1, {r,,ci); t), i -- 2 , . . . ,  N, be the N-particle distribution 
function of the system at time t: it is a positive, bounded, normalized 
function and symmetric with respect to the interchange of two bath 
particles. Its equation of motion reads 

iOPN/Ot = LNP N (2.1) 
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We refer to Equation (2.1) as to the pseudo-Liouville equation because of 
the singular character of the Lu operator. In our case the L N operator can 
be written (~'9) 

L u = L ~ + 8 L ,  (2.2) 

N 

L ~ = - i  x c a 00ra (2.3) 
a = l  

N 

8L n = i ~ ,  Kla ( 2 . 4 )  
a = 2  

Kla = (2c) 8(r  I - ra) [ P,a - 1] d7~l a (2.5) 

where 

c a = + c (2.6) 

P t o f ( c l , c a )  = f ( C a , C , )  (2.7) 

d ~ l a f ( r , , r a )  = f ( r ,  - -  ~ l e i , r  a - ~/ca); r/ > 0 (2.8) 

drha is an infinitesimal displacement operator; r / is  a small, positive quan- 
tity, set to zero at the end of the calculations. It is necessary because Kla is 
singular at rl = r  a and it acts on discontinuous functions at this point. 
Indeed ON(t) is a continuous function along the trajectories in phase space: 
however, these trajectories are discontinuous because collisions are instan- 
taneous. The displacement operator therefore determines if one has to take 
pu(t) before or after the collision at r I = r~. With such a rule, one can show 
that a suitably chosen "norm" f p 2 ( t )  dx N" (Iv N for a system o f  hard 
spheres is constant in time, as it should be. (3) An alternative way of writing 
Eq. (2.5) is 

K,a = ( 2 c ) [ 8 ( q  - r~ - ( c  1 - c ~ ) r t ) P , ~  - ~(r 1 - -  r a + (c I - -  C a ) q )  ] (2.9) 

so that the singularity of KI~ is at the left or the right of the jump of O N ( t )  

at r I = r a. 
An important property linked with the operator Kla is that there exists 

in the infinite two-particle phase space a projector Pa = p2 such that 

K,a = (1 - P . ) K , . P  a (2.10) 

The explicit expression for P. is [~(x) is the Heaviside function] 

ea = n(r ,  - r,) 8c~+c + n ( - r ,  + ra) 8,~_c (2.11) 

Equation (2.10) means that there is a partition of the pair phase space such 
that K~ acts on only one part, namely the P, subspace. Points in the 
complementary subspace will not be able to go to the P~ part; recollisions 
are impossible for the infinite system (indeed, in Ref. 1 they have been 
shown to give contributions of order 1/L) .  We can reformulate the main 
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lemma stated in Ref. 1 with the help of this projection. Let us define L~u_a) 
by 

L N = L(N_a) "k- iKla (2.12) 

Then it is readily shown that 

Pa {exp[ - iL(N_a)t ] }(1 -- Pa ) = 0 (2.13) 

so that it implies 

gla ( e x p [  -- i t (N_a)t  ] )  gla = 0 (2.14) 

which is Eq. (2.15) of Ref. 1. Of course such a property is only true after 
having taken the thermodynamic limit. 

Let us also mention another difficulty due to the discontinuous nature 
of PN(t) at the point of contact of two rods. pu(t) should vanish for 
overlapping configurations. However, one may continue PN(t) inside over- 
lapping configurations so it can be derived, and then multiply it by a 
weight function which is 1 everywhere except for overlapping configura- 
tions, where it vanishes. Such a procedure is impossible for points. How- 
ever, we can follow the procedure for rods of nonzero diameter d and then 
take the limit d--)0. 

Let f(r) and g(r) be two continuous and square summable functions 
except for a discontinuity at r = 0. Then we give the following meaning to 
the expression 

+ ~176 f(r) Og(r) 
Or 

= lim dr W(r-  d)f(r) 0--7- 
d-~O 

+ f dr f(r)g(r)[ 6(r - d) - 6(r + d) ] ) (2.15) 

where 

so that 

W ( r -  d)  = 0, [r I < d 

= 1, r > d ( 2 . 1 6 )  

f dr f(r) 3g(r)or 

/ d~o ~-= d f(r) O----7- 

+ f( + d)g( + d) - g ( -  d ) f ( - d )  ] 
3 

(2.17) 
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The interpretation given in Eq. (2.17) may be shown to be consistent with 
conservation properties along the free motion trajectories. 

3. KINETIC EQUATIONS 

3.1. Reduced Distribution Functions 

Let us briefly recall the definitions of the well-behaved functions at the 
thermodynamic limit. The formalism we use has been developed in Ref. 11 
for the study of dense fluids. 

We start with the expansion of ON(t)  in clusters: 

N 

ON( t )  = ~ Z 6 p u j ( r , ,  ( r , } , c ,  . . . . .  CN; t)  (3.1) 
l =  1 {1} 

where {/} is a set of l particles, 1,i 1 . . . . .  il_ l E 1 . . . . .  N. Introducing the 
one-particle projector 

1 (+  L/2dr... 
Pi  = -~ a -  1./2 (3.2) 

and its complement Qi = 1 - Pi,  we obtain that ~ON,l(t) is given by 

(3.3) 

Since the system is finite, we have to define boundary conditions, which we 
take periodic; however, since the size of the system L goes to infinity 
together with N ,  but N I L  =O remains finite, these periodic conditions 
have no influence. We denote this limit by lim. We make the hypothesis 
that the following quantity is well behaved in the thermodynamic limit: 

6 % . 1 ( r  I . . . . .  rt, c 1 . . . .  , cn; t) 

= lim LU-1 2 aON,l(rl,{r,},cl . . . . .  CN;t) 
s  " " " C N  

(3.4) 

Moreover, we impose that at t = 0 

6 % . l (  r I . . . . .  rt, c l ,  . . . , cn; O) 

= ( } ) " - ' 6 e p ,  j ( r  1 . . . . .  r , , e  I . . . .  , c ~ ; 0 ) ,  n /> ! 
(3.5) 

0, i ~ ( l } (3.6) ~Wl, t ( 0 )  trj - r,J--,~ 

These two relations express the fact that there is no long-range correlation 
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at t = 0. The n-particle distribution function is defined, as usual, as 

f~(r  1 . . . . .  G ,c l  . . . . .  c . ; t )  

( N -  1)! ( .  
= lim j d r ~ + l . . ,  dr u ~ ON(t) 

(N n)! C n + l  " . . . , CN 

(3,7) 

We introduce a function which we call the n-particle correlation 8fn(t ) 

(Sf,=--f~!), 

8 f , ( r ,  . . . . .  rn,c, . . . . .  c , ; t )  =p"&&,n(r,  . . . . .  rn,c , . . . . .  c , ; t )  (3.8) 

and obtain the most general form of initial conditions in terms of reduced 
functions: 

f . ( q ,  . . . , G, cl . . . . .  c.;O) 

= ( ~ )'-If(rl,el,O) + ( 2 )'-' ~ 8f2(rl,r,,r ) (,.9) 
a=2 

+ . . .  + 8 f n ( r  1 . . . . .  r n , C  ' . . . . .  Cn;0 ) 

In Ref. 1 we have shown that the decomposition (3.9), or equivalently the 
properties (3.6) and (3.7), propagate in time. Correlations between the 
tagged particle and bath particles are created during the evolution, but they 
are localized in space so that Eq. (3.9) is still meaningful. 

3.2. Reduced Equations 

The equations obeyed by f l ( t ) ,6 f2( t )  . . . .  are derived as follows: first 
we write the master equation for the projection of ON(t): 

N 
PN = II e, (3.10) 

i=2 

OeNON(t) 
_OotGN(r)pNpN(tr _ r)  + @N( QNPu(O); t) (3.1 1) 

0t 

QNPN(t)  = s  -- r)  + 62N( QNON(O); t) (3.12) 

We then multiply each equation by L N- ~, sum over the velocities, and take 
the thermodynamic limit--see the definitions (3.4) and (3.8). Calculations 
are long and tedious, but without any surprises; they amount to showing 
that terms involving recollisions of the tagged particle with any other bath 
particle are indeed of order 1 / L  and thus strictly zero in the thermody- 
namic limit. Besides, one gets a Boltzmann propagator for the tagged 
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particle, or, equivalently, the equation of motion for f l (r  l, c I , t) reads 

) at -c' Tq + C 

where 

Cfl (  r ,, c,,  t) = (pc)[ f , (  q , - c,,  t) - f l (  r, ,  c,,  t)] 

and the so-called destruction term is given by 

|  ;t) = k | t) 
n = 2  

n{.)(a/.(0); t) 

(3.13) 

(3.14) 

(3.15) 

> 

•  ( t -  tl) - c , ~ - c  2 ~ + C  K,3 

• . - . e x p  (tn, 2 - 0 )  - c  1 ar 1 . . . .  c n ~ + ( 2 ,  6fn(O) 

We can give a simple physical meaning for this expression: an n-particle 
correlation influences the evolution of f~ after these n particles have all 
collided with the tagged particle. Between collisions one has a damped 
propagator. A graphical representation has been introduced in Ref. 1 to 
sketch such events. 

When no correlations are present at t = 0, Eq. (3.13) reduces to the 
Boltzmann equation. (mS) It should be noted that correlations will be created 
as time increases. However, the correlations created do not influence the 
evolution of f l ;  indeed they are in the postcollisional subspace, which is 
well separated from the precollisional subspace--see Eq. (3.14). This is the 
reason why the collision operator C is strictly Markovian, and so there is no 
arbitrariness in choosing the initial time. 

The preceding argument suggests that the part of the correlations that 
are in the precollisional subspace obey a separate equation of motion. This 
is even more obvious if we compare Eq. (3.13), together with (3.16), with 
the corresponding hierarchy equation as derived, for example, in Ref. 11; 
this last equation reads 

a f t ( a t  - c ,  , + ) ; + c2 (3.17) 

This implies that the part of 8f2(t) that influences f l ( t )  depends on { 6f, (0)}, 
: > 2; moreover, that part of 6fz(t ) belongs to the P2 subspace [see Eq. 

(2.11)1. 
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To be more precise, let us define the precollisional correlation 

Af2(t ) = (2 /p)e  2 6f2(t ) (3. l S) 

and its complement 

L~f2(t ) = (1 -- P2)6f2(t) (3.19) 

More generally, for any n 

kf . ( t )  = (2 /p ) " - l (p l  . . . Pn ) 6f.(t) 

and 

(3.20) 

A fn( t ) = 8fn( t ) -- (p / 2)"- l A f , (  t) (3.21) 

Then we should be able to prove that there is a separate equation for the 
evolution of Aft(t), which depends only on Aft(t) and Afros>,(0 ), and 

another for Af,(t), which could be a functional of Aft(t). This is indeed the 
case .  

We start from the master equation, Eq. (Y12), multiply it by L u-~, 
sum over the velocities c 3 , . . . ,  c N, integrate over space variables, and take 
the thermodynamic limit; one gets for 6f2(t ) 

8f2(t  ) = tdtl exp  --  c1 ~ r [  - -  c2 ~ r  2 "+" C ( t  - t l )  K,2f,(tl) 

+ e x p  - c , ~ - c  2 ~ + C  t 8f2(0 ) 

+aodt, exp[ \--Cl -~rl - - K,2 

P 0 c O + C)(t  - + 2 f ar'  fo'at' fo"a: e*P[ (-< -UT,  - ")] 
• K13 exp 2-~r2--c3-~r3 +G (t, -- t2) 

f( o • - c , ~ - c  3 ~ + C  t 2 8f2(c , ,c 3 , r , , r  3;0) 

+ s  exp - C l ~ - ~ q - c 2 ~ r 2 + C  ( t - t , )  % ( t  0 (3.22) 
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Fig. 1. 

2 

J "<- , 

2 

(a) (hi 

(a) Graphs contributing to Af2 ( t  ) only; (b) those contributing to 6f:~(t) and not to 
Af2( t l .  

In Eq. (3.22) we have grouped all contributions coming from 6f~>>.3(0 ) in the 
destruction term @2(tl). All the terms contributing to 3f2(t ) may be repre- 
sented by graphs. This is shown in Fig. 1, where we distinguish between 
graphs contributing to ~Sf2(t ) and those contributing to ~fz(t). The analytic 
expression for Afz(t ) is simple: 

Af2(t )=exp - l - ~ r  1 - 

+ 2 

c 2 ~  + c t ;. ~f~(o) 

, , ) j --C1 ~ 1  -- c2~s "1" C (t -- t l)  J~2(ll) (3.23) 

and D2(tl) is the part of @2(tl) that has no K12 interaction (see Fig. 1). Now 
the remarkable feature of Eq. (3.23) is that it has the same form as the 
solution f l(Q, el, t) and therefore the equation of motion for Afz(t ) must be 
similar to Eq. (3.13). This is indeed so if we restrict the space to the P2 
subspace; taking the derivative of Eq. (3.23), one gets 

O~f2(t) ( ; ) c O  ) -- Ot - - c 1 ~ -  2 ~  + C  Af2(t )+  D2(t ) (3.24) 

where 

D~(0 = E B~"~(A/o(0) It) (3.25) 
n=3 

B~n~( Afo(O) l t) 

= fotdtl . . rt,_4- f d r 3 " ' ' d r % 3 ~ c ,  o �9  �9 JO Cltn - 3 

[(  3 3 3 ) 1 (3"26) •  p -Cl  -~Q -C2 ~r2 -C3 ~r3 + C  (t - tl) Kj4 

•  Klnex p -c l~-~r  1 . . . .  c . -~ r  + C  tn-3 ( 2 ) ' A f n ( 0 )  
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Equation (3.24) could be made valid in the entire pair space by the addition 
of a singular operator, similar to the collision operator K12; however, as we 
shall not need this continuation, we shall use Eq. (3.24) and restrict its 
validity to the P2 subspace. The generalization to higher order correlations 
A f t ( t )  is straightforward, 

3 A f , ( t )  3 G 3 C) D,( t )  (3.27) -~t - ( -  cl ~7 t . . . .  ~ + AT"U) + 

where the expression for D,(t)  is an obvious generalization of Eq. (3.26). 
Finally, this set of equations can be written in a simple form, which we 

shall use in the next section. Introducing the dimensionless variables 

�9 = t ( l / o ~ )  

x i = rip (3.28) 

v, = c J c  (v;  = _+ 1) 

and shifting to relative distances (x u = x I - xi), 

zXf ,(r)  = A f , ( x , , x  u . . . . .  x ~ , , v , ,  . . . , G ;  ")  

= A f , ( x ~ , x  2 . . . . .  x , , , v ,  . . . . .  %;'r) (3.29) 

[we shall omit the tilde in the equations below; however, it must be clear 
that the functions Af, (r) refer to the definition (3.29)], we get 

~-r - - v ~ T x ~  + C  2~f,(r) t2~,X~2Af2(,) 
V 2  

OAf.(,) ( a 
3r  - - v ~  3 x  t ) . . . . .  v,. ~ + ~ AT.(, ) 

where C = ( toe)-1G. 

(3.30a) 

+ f dx , ,n+ 1 ~ K,..+, 2xf.+,(r) (3.30b) 
D n + l  

3.3. H - T h e o r e m  

Because the set of equations (3.30) is linear, it is quite natural to look, 
as the associated Lyapunov function, for the square of the reduced func- 
tions; so let us define 

H . ( , ) =  E; fax,axe2 ..dx~.af~(,) (33l) 
v I - . . , 9 , ~  - 
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where summat ion  and  integration are pe r fo rmed  over the Pn subspace (i.e., 
Xl2 > 0 for v 2 = + 1,xI2 < 0 for v 2 = - 1, and so on). Then  the funct ion 

H(~-) = ~ H , ( r )  (3.32) 
n = l  

has the proper ty  

dH(.c)/d.c < 0 (3.33) 

The inequality (3.33) reduces to an equality at equilibrium. 
We shall prove the inequality (3.33) in the following way: first we 

suppose that  there is no correlat ion at t = 0; then the proof  of Eq. (3.33) is 
trivial and reduces to the Bol tzmann case. Then  we add pair  correlations at 
t = 0 and we prove  that  the contr ibut ion coming f rom the destruction term 
for Afl(~" ) and that  of the collision term for Af2(T ) compensate ,  so that  the 
inequality remains valid. One can then add successively higher order  initial 
correlations and  cont inue the argument .  

If  at  ;r = 0 all Af,>2(0 ) = 0, then 

a/4(~) d/4,(~) 
d~" d~- 

) = 2 - v, ~ + C Af,(~-) (3.34) 
V I = _ I  - -  

= - 2  l (Vl = + 1 , x l ; ~ -  ) 

_ Afl(vl = _ 1,xl ; ~.)]2 < 0 (3.35) 

Suppose now that, at  t = 0, A f2(0 ) v a 0 but  Af,>3(0 ) = 0; we have  

dH(.c) dH,(T) dH2(.r ) 
d~" - ~ + ~  (3.36) 

where now 

dn~(~)  

T - 2  ) o,= + ,~  ~x, + ~ ~f'(~) 

+ 2 ~. (dxldxi2Afl(r)Ki2Af2('O (3.37) 
i)l,O 2 

: -~f_+=<,~, IAs , (v , :  + , , x , ; ~ ) -  As,(v, : -,,,<,,~)1 ~ 

;_+2,I, + 2  [ A / l ( v  1 = + l , x i ; ' r ) - A f l ( v  1 = - 1 , x i ; ' r ) ]  

x [ A f z ( v  1 = - 1 , v 2 =  + 1 , x l , x l 2  = + , ; ' i - )  

- Af2(v 1 = + 1, v 2.= - 1, Xl, x12 = - -  '17; T ) ]  (3.38) 
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This expression has no definite sign; however, if we combine it with 
dH2(r)/dr,  which reads 

d/42(~) 
dr - 2 ~, f dx ,  dXl2Afffr) 

~1,~2 

• - v '  g~Tx~ - ~'~ ax,~7 

=-2fdXlIAfi(vi= + 1,v~ = - 1 , x , , x , 2 = - ~ ; ~ )  

+ aft(v, = - 1 , v 2 =  + 1,x,,x~2 = +~;~)] 

(3.39) 

- 2fdx ,  dXl2~, [~f2(v, = + 1,v2,x,,x,2;'r) 
*o 2 

- - ~ f 2 ( D 1  = - - 1 , D 2 , X I , X 1 2 ; T ) ]  2 (3.40) 

we obtain 

= + l , x , ; r ) - A f l ( v  , = - l , x , ; r ) ] a  

-fdx,[~f,(v,= +l,x,;,) 

+ Af2(v 1 = -- 1,v 2 = + 1,Xl,Xl2 = + r / ; r )  

- -  A f l ( * 3 1  = - -  1 , X  1 ; '7") - -  A f 2 ( t ~  I = + 1,v2 = - l , x , , x l 2  = - ~ ; r ) l  2 

--f&l[Af2(vl= - 1 , v 2  = +l,x,,x,2= -t-~;r) 

+ 5f2(v, = + 1,v 2 = - l , X l , X l 2  = - ~ ; , r ) ]  2 

-2fdx, fdx,2Z[Af2(v ,=  + l , I ) 2 , X l , X l 2 ; ' r  ) 
*O2 

- -  A f 2 ( I )  1 = - -  1 , D 2 , X I , X I 2 ; ' T ) ] 2  < 0 (3.41) 

If initially Af2(0 ) =/= 0, A f3(0 ) 4= 0, but  Af,>4(0 ) = 0, then the expression for 
dH2(r)/dr,  Eq. (3.40), will be modified, because of the influence of Af3(0 ), 
but  at the same time its combinat ion with dH3(r)/dr will be such that 
d H ( r ) / d r  <.< 0; and so on. At each step we add the following negative 
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quanti ty:  

RE f dxI " " " dXln [Afn(T)-CAfn(q')] 
{v}aP. 

=1- E f aXl'''dXl,n+lAfn("t')gl,n+lAfn+'(T) 
{v} " P .  + l 

+ 2 { ~ } f e . + d x l ' ' ' d x , , . + , z X f . + l ( r ) ( - v , , . + l ~ ) 2 ~ f . + , ( r  ) 

= E ~ dxl~ 

- - X  f~ d x l . . . d X l , n + l [ A f n ( v l  = 4-1 . . . . .  "r) 
{v} Pn+l 

+ A f n + l ( V l = - I  . . . . .  V l , n + l = - - l , ' ' ' , X l , n +  ! =  + ~ ; r )  

-- Afn(v 1= --1 . . . .  , r) 

-- Afn+j(t~l = + l , . . .  , Dn+l = + 1  . . . . .  Xl,n+l = - - ) ) ; r ) ]  2 

-Z[" &1""dxi,.+1 
{v} w p.+~ 

x [ A f , , + l ( v t =  - 1  . . . . .  v,,+l = + 1 , . . . ,  x l#+ l  = + ~ / ; r )  

+ Aft+ l(vl = + 1 . . . . .  %+1 = - 1 . . . . .  x1,~+t = - ~; r )  ]2 (3.42) 

It  is also obvious f rom Eqs. (3.35) and  (3.38) that  the equil ibrium distribu- 
tion is obta ined  by  requiring d H ( r ) / d r  = 0; it corresponds to 

f ax, afTq(v,,x,)= f ax, Af q(-v,,xO (3.43) 

f d x  I Afneq(t~ 1 . . . .  ) = 0 ( 3 . 4 4 )  

One m a y  have a paradoxica l  si tuation where the H- func t ion  is constant,  so 
that  the Afn(r ) will have their equil ibrium value but  some correlations will /-.. 
still exist in the postcollisional subspace,  the Afn(r ). These  correlations do 
not  affect  the future values of 2xfn (~ ')--which are c o n s t a n t - - a n d  will disap- 
pear  to infin/xity, simply by free mot ion  and creation of higher order  

correlations Afm>n(r ). But consistently they do not  produce  any  ent ropy in 
the system. 

Because the technical nature  of this section m a y  hide the scheme of the 
proof,  we briefly stress some points of the derivation. The  set of equations 
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(3.30) may be written 

OAf/Ot = M. Af (3.45) 

where the infinite number matrix M is given by 

Mn, n, = - I )  1 O x  1 " . l ) l , n +  1 O X l , n +  1 vn+l.." 

(3.461 

contrary to the original hierarchy for 6f, where another nonvanishing 
codiagonal Mn,,,6,,,n_ ~ appears. The H-function is simply the scalar pro- 
duct (A f, A f )  defined by Eqs. (3.31) and (3.32). Because of the infinite sum 
appearing in Eq. (3.32), we had to prove the inequality (3.33) by a recursive 
relation [see Eq. (3.42)]. 

It may appear strange that the free motion operator, 

- v l , . + l ~ / O x l , . + l  

is essential for the derivation of the H-theorem. However, this is related to 
the decomposition of the phase space and it is not possible to reproduce 
such a proof for an ideal gas, because of the absence in that case of the 
dissipative operator G. 

Let us also mention that we presented an H-function which does not 
depend on the space variable. This is a limitation because we have to 
suppose, at least at t = 0, that the norm is finite. There is, however, no 
difficulty in defining a local entropy. 

4. V E L O C I T Y  I N V E R S I O N  

Let us finally illustrate the results by calculating the H-function during 
a velocity inversion "experiment." The experiment can be described as 
follows: we prepare the system at time -T0  in a nonequilibrium situation 
but without any correlation. The system evolves up to time zero, when we 
invert all particle velocities. Because of the reversibility of laws of motion, 
the system will evolve backward, recovering its initial state at time + %, 
except for the inverted velocities. In Ref. 1 we showed that the equation for 
2xfl(~- ) correctly describes this phenomenon. Also, for a sufficiently short T0, 
we can limit the study of correlations to binary correlations, that is, 6f2(~" ), 
as there is no time for higher order correlations to be built. Here we shall 
calculate the H-function for a short To, so that we will be allowed to neglect 
the Hn>~3(~- ) in the infinite series for H(r).  

The initial state is a homogeneous state with no correlations but with a 
nonequilibrium velocity distribution for the tagged particle. Because the 
system is homogeneous we shall work with the integral over the x~ variable 
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of the reduced distribution function 
A~. (v l  . . . .  , v . ,x l2  . . . . .  xl,,; T) 

(4.1) 
= f ax, Af . (v ,  . . . . .  v . , x l  . . . . . .  x,.;T) 

So, at time - T  o we have 

A ~ P I ( D  1 = "If- 1, - -  TO) - -  A ~ I ( D  [ = - -  l ,  - -  TO) = + 1 (4.2) 

A%~>2 ( -  z0) = 0 (4.3) 

(a) Between z = - T o and r = 0. The state of the system is given by the 
solutions of the kinetic equations [see Eqs. (Y13), (3.21), and (3.23)]: 

A%(v l, $) = exp[G(T + To)Aq01(1)l,- T0) ] (4.4) 

2i9~2(vl,v2,x12;r ) = & , e x p  -v12 ~--~12 + C (rl)  
-- ,r 0 

• K~2 A%(T - r (4.5) 

A%>~2(T ) = 0 (4.6) 

We have not written down the A%>~3(T ), which, although they are created 
by collisions taking place in the system, are negligible because r o has been 
chosen small. 

Using the explicit representation of the propagators in Eqs. (4.4) and 
(4.5) [see Eq. (3.38) of Ref. 1], we obtain the following expressions for 

A~1(T ) and A~2(r): 
2xe&(v, = + 1;r) = 1 - A%(v, = - 1;r) (4.7) 

= �89 + e  -2(~+*~ (4.8) 
/ N  

A q 0 2 ( l ) l  ~'~ �9 = "q- 1,xt2; T) 
/-. (4.9) 

= - Aep2(v 1 = v 2 = - 1, - x 1 2 ; r  ) 

= e_2( ,+ ,o) f f  d%e~ , io ( [_x12(2r  ' . x ,2)] , /2)  
7" 0 

• ~ ( -  X,2(ZT t + X12)) (4.10) 

Aq02(1)  1 = - - t 9 2  = --[- 1,Xl2;Y ) / . .  (4.11) 
= - - A ~ 2 ( / ) I  = - - / ) 2 - ~ "  - -  1, - - X t 2  ; T )  

/ ) 1 / 2  
= e-2(r+%) elX121/2 d t. ~q~- dr I eT"~( X12 

�9 , ' - - , r 0 + l X l z [ / 2  2T1 - -  X12  

• I t ( [  x,2(2% - x,2)]1/2)~(x,2(2% - x,2)) 1 (4.12) 
J 
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where I , ( x )  are Bessel functions of the first kind (u) and V(x) is the 
Heaviside function. 

(b) At time r = 0 we invert the velocities of all particles. Let H be 
defined by 

I I f ( v , ,  . . . , v, ,)  = f ( - v i  . . . .  , - v, ,)  (4.13) 

Then  the state after inversion is given by 
/ x ,  

A%(~ = 0 +)  = U A % ( r  = 0 - )  (4.14) 
/ N  

A % ( r  = 0 + )  = I I d ~ % ( r  = 0 - )  = 0 (4.15) 

These last equations show that the  inversion of velocities shifts the correla- 
tions f rom the (I - P2) subspace to the P2 subspace; indeed 

l-I(1 -- P2) = P21~ (4 .16 )  

The system now evolves according to the equations 

aAcp, _ ~n &P, + @,(Aw.(0t) I r) (4.17) &- 

) - - v , 2 ~ - - ~ z  z + C  Aq02+ |  (4.18) 

In Ref. l it was shown that, with the initial condit ion (4.14), the destruction 
term @l(r) reduces to 

@,(r)  = - 2 C I - I A % ( - r ) ,  0 < r < % (4.19) 

= 0 r > r 0 (4.20) 

Thus that the solution of Eq. (4.17) is, for r < to, 

2~q0,(r) = II  Atp , ( -  r)  (4.21) 

By the same procedure,  it is easy to show that 

@2(r) = - -2CII  Aep2(-- r ), 0 < r ~< r o (4.22) 

= 0 �9 > r o (4.23) 

and therefore 
A 

A r & ( r )  = U Aq02( -- r )  (4.24) 

At r = r o the system has returned to its initial state and starts evolving 
again according to Eqs. (4.4), (4.5). 

(c) The H-funct ion,  for negative times, is 
H-funct ion,  so 

H( r  = H , ( r )  = E ~ ( v ,  ; r 
DI 

= �89 + e -4(~+~~ 

simply the Boltzmann 

- r  o ~ < r < 0  (4.25) 

(4.26) 
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I H2(O ) 

.5 

�9 . . . . . .  - 2 - ' : - _  

g . .  . . "  ; , :%. 
I 10 

Fig. 2. H2(0 + ) as a function of %. (- -) Contributions coming from v 1 = - ~ 2 .  ( ' " )  
Contributions coming from % = v 2. (--) Total contribution. 

H o w e v e r ,  for  ~" > 0, as we have  seen,  the  ve loc i ty  inve r s ion  shif ts  the 
co r r e l a t i ons  to  the  P2 subspace ,  a n d  we h a v e  

H(r) = Hl(r ) + H 2 ( r  ) + . . .  (4.27) 

whe re  [see Eq.  (4.21)] 

H,(r) = H , ( -  ~') = �89 + e - 4 ( % - ~ ) ) ,  T < r 0 (4.28) 

a n d  [see Eq.  (4.24)] 

H 2 ( r ) =  ~ ,  fdx ,2k~(r  ) (4.29) 
t~t~D 2 

= E f d x , 2 A ~ ( - r )  (4.30) 
t)Dt? 2 , J  

wherea s  H 3 ( r  ) is neg l ig ib le  as long  as  we m a i n t a i n  r 0 smal l  [this c a n  be  
c h e c k e d  b y  a sho r t - t ime  e x p a n s i o n  of  Aqv3(r)]. 

In  F ig .  2 we show the j u m p  of  the  H - f u n c t i o n  at  r = 0 as a f u n c t i o n  of 

I 

H('C ) 

--... 

§ 

Fig. 3. The H-function expanded in powers of -r (% = O.l). (- -) Order ~; (--) order r 2. 
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To; this figure clearly shows that this jump is important for short 7 0 . For 
long 7 0 one needs to look for higher order correlations to get the jump for 
the H-function. The distinction we make between contributions to H2(r 
= 0 + ) coming from configurations with opposite and those with equal 
velocities shows that the short-time behavior is dominated by free motion, 
whereas the long-time behavior is a diffusive process, so that the two 
contributions have equal importance. 

Figure 3 shows a short-time expansion of H(7) during the all velocity 
inversion experiment, neglecting terms of the order 73 and putting % = 0.1. 

5. CONCLUDING REMARKS 

The main result of this paper is a definition of an H-function (or an 
entropy) which depends on nonequilibrium correlations. It is based on a 
peculiarity of this one-dimensional model, namely the existence of projec- 
tions of the reduced distribution functions which obey a closed system of 
kinetic equations. This decoupling depends on the correlations initially 
present. The time evolution of these correlations is dissipative and the 
system goes to equilibrium. The construction proposed for the H-function 
depends on this property and is in no way general. However, it shows how 
a dynamical system may, in the thermodynamic limit, behave dissipatively. 

Another point of interest is that one has to go to a reduced description 
before defining the H-function. This reduction seems to be necessary in 
order to distinguish between a simple "phase mixing" evolution, as happens 
in an infinite ideal gas, and an approach to equilibrium with a well-defined 
transport coefficient, as appears in the model studied here--up to now, the 
reduction seems to be an inescapable restriction. 

REFERENCES 

1. P. R~sibois and M. Mareschal, Physica 94A:211 (1978). 
2. P. R~sibois, Physica 90A:273 (1978). 
3. P. R~sibois, Physica 94A:1 (1978). 
4. I. Prigogine, C. George, F. Henin and L. Rosenfeld, Chem. Scr. 4:5 (1973). 
5. J .L.  Lebowitz and J, Percus, Phys. Rev. 155:122 (1967). 
6. M. Aizenman, S. Goldstein, and J. L. Lebowilz, Comm. Math. Phys. 39:289 (1975). 
7. B. Misra, Proc. Nat. Acad. Sci. U.S. 75:1627 (1978). 
8. D. Jepsen, 3. Math. Phys. 6:405 (1965). 
9. P. R~sibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 

1977). 
10. M. Ernst, J. Dorfman, W. Hoegy, and J. van Leeuwen, Physica 45:127 (1969). 
11. P. R~sibois and J. L. Lebowitz, J. Stat. Phys. 12:483 (1975). 
12. D. Ya. Petrina, Teor. Mat. Fiz. 38:230 (1979). 
13. M. Abramowitz and 1. Stegum, Handbook of Mathematical Functions (Dover, New York, 

1965). 
14. M. Mareschal, in preparation. 


